Niny Arcila Maya

Date: April 14, 2022
Time: 10:00 am - 11:00 am
Location: Zoom (email sacha.ikonicoff at ucalgary.ca for more info)

Title: Decomposition of topological Azumaya algebras in the stable range

Abstract: Topological Azumaya algebras are topological shadows of more complicated algebraic Azumaya algebras defined over, for example, schemes. Tensor product is a well-defined operation on topological Azumaya algebras. Hence given a topological Azumaya algebra A of degree mn, where m and n are positive integers, it is a natural question to ask whether A can be decomposed according to this factorization of mn. In this talk, I explain the definition of a topological Azumaya algebra over a topological space X, and present a result about what conditions should m, n, and X satisfy so that A can be decomposed.