Title: An (∞,2)-categorical pasting theorem
Abstract: Power’s 2-categorical pasting theorem, asserting that any pasting diagram in a 2-category has a unique composite, is at the basis of the 2-categorical graphical calculus, which is used extensively to develop the theory of 2-categories. In this talk we discuss an (∞,2)-categorical analog of the pasting theorem, asserting that the space of composites of any pasting diagram in an (∞,2)-category is contractible. This result, which is joint with Hackney—Ozornova—Riehl, rediscovers independent work by Columbus.