Gijs Heuts

Date: April 7, 2022
Time: 10:00 am - 11:00 am
Location: Zoom (email sacha.ikonicoff at for more info)

Title: Koszul duality of algebras for operads

Abstract: Ginzburg-Kapranov and Getzler-Jones exhibited a duality between algebras for an operad O and coalgebras (with divided powers) for a “Koszul dual” cooperad BO, taking the form of an adjoint pair of functors between these categories. Instances of this duality include that between Lie algebras and cocommutative coalgebras, as in Quillen’s work on rational homotopy theory, and bar-cobar duality for associative (co)algebras, as in the work of Moore. I will review this formalism and discuss the following basic question: on what subcategories of O-algebras and BO-coalgebras does this duality adjunction restrict to an equivalence? I will discuss an answer to this question and explain the relation to a conjecture of Francis and Gaitsgory.

Recording (Passcode: u.2c?5w?)