Title: Strict Monoidal Categories as Internal Monoids.
Abstract: Internalization is a paradigm for the generalization of classical mathematical definitions, e.g. monoid generalizes to internal monoid in a monoidal category, or group generalizes to internal group in a category with finite products. In this talk, we will demonstrate that strict monoidal categories may profitably be studied as internal monoids in the 1-category of 1-categories. We present detailed calculations pertaining to limits and colimits of internal monoid objects, while relying on little more than the material of an introductory course in category theory.