(Infinity)-Categories and Functors	Day Convolution	Goodwillie Calculus	(Infinity-)Operads	Pro-operads 00

Day convolution, $\infty\text{-operads}$ and Goodwillie calculus

Michael Ching

Amherst College

12 March 2018 Calgary, Alberta

(Infinity)-Categories and Functors ●OO	Day Convolution	Goodwillie Calculus	(Infinity-)Operads	Pro-operads 00
What sort of ca	iteanries?			

- $\mathcal{C}\text{:}$ pointed compactly-generated $\infty\text{-category}$
 - ∞-category = quasicategory = weak Kan complex, a model for an (∞, 1)-category (Boardman-Vogt, Joyal, Lurie) (think of C as a category enriched in simplicial sets or topological spaces: for X, Y ∈ C, there is a mapping space Hom_C(X, Y))
 - compactly-generated = generated under filtered colimits by a small subcategory C^ω that has finite colimits
 - pointed = has a null object * (both initial and terminal)

Examples

- Top_{*}: pointed topological spaces (or Kan complexes)
- Sp: spectra
- Alg $_{\mathcal{O}}$: (augmented) algebras in Sp over an ∞ -operad \mathcal{O}

(Infinity)-Categories and Functors O●O	Day Convolution	Goodwillie Calculus	(Infinity-)Operads	Pro-operads 00
Spectra				

Sp is the stable ∞ -category freely generated under colimits by a single object *S* (the sphere spectrum):

- stable means (fibre sequences = cofibre sequences), (pushouts = pullbacks)
- pointed compactly-generated
- closed symmetric monoidal $\infty\text{-category}$ with smash product \wedge satisfying $S \wedge S \simeq S$
- ullet analogue: chain complexes of abelian groups under \otimes
- the stabilization of Top_{*}: there is a universal adjunction

 Σ^{∞} : Top_{*} \rightleftharpoons Sp : Ω^{∞}

such that any colimit-preserving functor from Top_* to a stable $\infty\text{-category}$ factors through Σ^∞

(Infinity)-Categories and Functors	Day Convolution	Goodwillie Calculus	(Infinity-)Operads	Pro-operads
000				

What sort of functors?

Philosophy of this Talk

We can understand an $\infty\text{-category}\,\mathcal{C}$ by studying the functors $\mathcal{C}\to Sp$ in a systematic way.

Let $Fun_*(\mathcal{C}, Sp)$ be the ∞ -category of functors $F : \mathcal{C} \to Sp$ that are

- reduced: $F(*) \simeq *$
- finitary: F preserves filtered colimits

(Infinity)-Categories and Functors	Day Convolution ●○○	Goodwillie Calculus	(Infinity-)Operads	Pro-operads
Day convolutio	n			

There are symmetric monoidal ∞ -categories:

- Sp: with the smash product ∧
- Fun_{*}(C, Sp): with the objectwise smash product $\overline{\land}$ of functors:

 $(F \overline{\wedge} G)(X) = F(X) \wedge G(X).$

There is a symmetric monoidal structure \otimes on the $\infty\mbox{-category}$ of functors

 $\mathsf{Fun}_*(\mathcal{C},\mathsf{Sp})\to\mathsf{Sp}$

that admits natural equivalences (of spectra)

```
Nat(A \otimes B, C) \simeq Nat_{F,G}(A(F) \wedge B(G), C(F \overline{\wedge} G)).
```

This is the Day convolution of A and B. (This construction is due to Glasman in the ∞ -categorical context.)

(Infinity)-Categories and Functors	Day Convolution	Goodwillie Calculus	(Infinity-)Operads	Pro-operads
	000			

An Example of Day convolution

Example

For object $X \in C$ we have the *evaluation functor*

$$\operatorname{ev}_X : \operatorname{Fun}_*(\mathcal{C},\operatorname{Sp}) \to \operatorname{Sp}; \quad \operatorname{ev}_X(F) = F(X).$$

What is $ev_X \otimes ev_Y$?

By Yoneda (for Sp-valued functors), ev_X is representable:

$$\operatorname{ev}_X(F) \simeq \operatorname{Nat}(R_X, F); \quad R_X(-) := \Sigma^{\infty} \operatorname{Hom}_{\mathcal{C}}(X, -)$$

The Day convolution of representable functors is representable, so:

$$(\operatorname{ev}_X \otimes \operatorname{ev}_Y)(F) \simeq \operatorname{Nat}(R_X \overline{\wedge} R_Y, F)$$

 $\simeq \dots$
 $\simeq \operatorname{cr}_2 F(X, Y).$

(Infinity)-Categories and Functors	Day Convolution	Goodwillie Calculus	(Infinity-)Operads	Pro-operads

Day convolution and cross-effects

When F is reduced

$$ev_X(F) = F(X) \simeq cr_1(F)(X)$$

so the previous example can be wrtten

$$\operatorname{cr}_1(-)(X) \otimes \operatorname{cr}_1(-)(Y) \simeq \operatorname{cr}_2(-)(X,Y).$$

More generally:

Lemma

For $X_1, \ldots, X_n \in C$:

$$\operatorname{cr}_n(-)(X_1,\ldots,X_n)\simeq \operatorname{cr}_1(-)(X_1)\otimes\cdots\otimes\operatorname{cr}_1(-)(X_n)$$

 $\simeq \operatorname{ev}_{X_1}\otimes\cdots\otimes\operatorname{ev}_{X_n}.$

(Infinity)-Categories and Functors	Day Convolution	Goodwillie Calculus ●OO	(Infinity-)Operads	Pro-operads 00

Polynomial Functors

Definition

A functor $F : C \to Sp$ is *n*-excisive if it takes strongly cocartesian (n + 1)-cubes to pullback cubes.

Construction (Goodwillie)

Any $F : C \rightarrow Sp$ has a Taylor tower:

$$F \rightarrow \cdots \rightarrow P_n F \rightarrow P_{n-1} F \rightarrow \dots P_1 F \rightarrow *$$

where $F \rightarrow P_n F$ is the universal approximation to F by an n-excisive functor.

(Infinity)-Categories and Functors	Day Convolution	Goodwillie Calculus	(Infinity-)Operads	Pro-operads
		000		

Layers and Derivatives

Theorem (Goodwillie)

The layer $D_n F := fib(P_n F \rightarrow P_{n-1}F)$ is n-homogeneous and is given in general by

$$D_n F(X) \simeq \partial_n F(X,\ldots,X)_{\Sigma_n}$$

where $\partial_n F : \mathcal{C}^n \to \text{Sp is symmetric multilinear.}$

Example

When $C = \text{Top}_*$, the functor $\partial_n F$ is determined by a single spectrum E_n (the *n*th derivative of *F*):

$$\partial_n F(X_1,\ldots,X_n) \simeq E_n \wedge X_1 \wedge \ldots \wedge X_n.$$

Main Question

How can we reconstruct F (or at least its Taylor tower) from its layers, i.e. from the collection $\partial_* F = (\partial_n F)_{n \ge 1}$?

(Infinity)-Categories and Functors	Day Convolution	Goodwillie Calculus ○○●	(Infinity-)Operads	Pro-operads 00

Day convolution and derivatives

For $X_1, \ldots, X_n \in \mathcal{C}$ there is a functor

$$\partial_n(-)(X_1,\ldots,X_n)$$
 : Fun $_*(\mathcal{C},\mathsf{Sp}) o \mathsf{Sp}.$

Theorem (C.)

For a pointed compactly-generated ∞ -category C, there is an equivalence (of functors $Fun_*(C, Sp) \rightarrow Sp$):

$$\partial_n(-)(X_1,\ldots,X_n)\simeq \partial_1(-)(X_1)\otimes\cdots\otimes\partial_1(-)(X_n)$$

natural in $X_1, \ldots, X_n \in C$.

Proof.

The n^{th} derivative can be written as a colimit of (desuspended) cross-effects. Then apply the previous calculation.

(Infinity)-Categories and Functors	Day Convolution	Goodwillie Calculus	(Infinity-)Operads ●○○	Pro-operads OO
Operads				

Let ${\mathcal C}$ be a pointed compactly-generated $\infty\text{-category.}$

Construction

There is a stable $\infty\text{-operad}\,\mathbb{I}_{\mathcal{C}}$ (think: coloured operad, enriched in Sp) with

- colours = objects of C;
- multi-morphism spectra $\mathbb{I}_{\mathcal{C}}(X_1, \ldots, X_n; Y)$ given by:

$$\operatorname{Nat}(\partial_1(-)(Y), \ \partial_1(-)(X_1) \otimes \cdots \otimes \partial_1(X_n))$$

This is a coendomorphism operad for the objects $\partial_1(-)(X)$ (for $X \in C$) under the symmetric monoidal structure of Day convolution.

This construction uses work of Barwick-Glasman-Nardin on the opposite of a symmetric monoidal ∞ -category.

(Infinity)-Categories and Functors	Day Convolution	Goodwillie Calculus	(Infinity-)Operads o●o	Pro-operads 00

Module structure on derivatives

For $F : \mathcal{C} \to Sp$, we have maps

$$\partial_{k}F(Y_{1},...,Y_{k}) \wedge \mathbb{I}_{\mathcal{C}}(\underline{X}_{1};Y_{1}) \wedge ... \wedge \mathbb{I}_{\mathcal{C}}(\underline{X}_{k};Y_{k})$$

$$\downarrow \simeq$$

$$\partial_{1}^{\otimes k}(F) \wedge \operatorname{Nat}(\partial_{1},\partial_{1}^{\otimes n_{1}}) \wedge ... \wedge \operatorname{Nat}(\partial_{1},\partial_{1}^{\otimes n_{k}})$$

$$\downarrow$$

$$\partial_{1}^{\otimes n_{1}+\dots+n_{k}}(F)$$

$$\downarrow \simeq$$

$$\partial_{n}F(\underline{X}_{1},...,\underline{X}_{k})$$

that make the symmetric sequence $\partial_* F = (\partial_n F)_{n \ge 1}$ into a right module over the ∞ -operad $\mathbb{I}_{\mathcal{C}}$.

(Infinity)-Categories and Functors	Day Convolution	Goodwillie Calculus	(Infinity-)Operads ○○●	Pro-operads 00

Derivatives of the identity functor

Any functor $G:\mathcal{C}\to\mathcal{D}$ between pointed compactly-generated $\infty\text{-}categories$ has derivatives

$$\partial_n G(X_1,\ldots,X_n;Y)$$

for $X_1, \ldots, X_n \in \mathcal{C}$ and $Y \in \mathcal{D}^{op}$.

Theorem (C.)

The terms in the operad $\mathbb{I}_{\mathcal{C}}$ can be identified with the derivatives of the identity functor $I_{\mathcal{C}} : \mathcal{C} \to \mathcal{C}$:

$$\mathbb{I}_{\mathcal{C}}(X_1,\ldots,X_n;Y) \simeq \operatorname{Nat}(\partial_1(-)(Y),\partial_n(-)(X_1,\ldots,X_n))$$
$$\simeq \partial_n I_{\mathcal{C}}(X_1,\ldots,X_n;Y).$$

So, for $F : C \to Sp$, $\partial_* F$ is a right module over $\partial_* I_C$. But this is not enough structure to be able to reconstruct the Taylor tower of *F*.

(Infinity)-Categories and Functors	Day Convolution	Goodwillie Calculus	(Infinity-)Operads	Pro-operads ●O
Pro-operads				

The first derivative is a colimit:

$$\partial_1 F \simeq P_1 F \simeq \operatorname{colim}(F \to \Omega F \Sigma \to \Omega^2 F \Sigma^2 \to \dots).$$

Hence

$$\mathbb{I}_{\mathcal{C}}(n) \simeq \mathsf{Nat}(\partial_1, \partial_1^{\otimes n}) \simeq \lim_L \mathsf{Nat}(\Omega^L(-)\Sigma^L, \partial_1^{\otimes n}).$$

So write

$$\mathbb{I}^{L}_{\mathcal{C}}(n) = \mathsf{Nat}(\Omega^{L}(-)\Sigma^{L}, \partial_{1}^{\otimes n}).$$

The inverse system

$$\mathbb{I}^{ullet}_{\mathcal{C}} := (\mathbb{I}^{L}_{\mathcal{C}})_{L \geq 0}$$

is a pro-operad (a monoid in the category of pro-symmetric sequences).

(Infinity)-Categories and Functors	Day Convolution	Goodwillie Calculus	(Infinity-)Operads	Pro-operads ○●

Modules over a pro-operad

A right module over the operad $\mathbb{I}_{\mathcal{C}}$ consists of a symmetric sequence A and suitable maps

 $A(k)
ightarrow \mathsf{Map}(\mathbb{I}_{\mathcal{C}}(n_1) \land \ldots \land \mathbb{I}_{\mathcal{C}}(n_k), A(n))^{\Sigma_{n_1} imes \cdots imes \Sigma_{n_k}}.$

A right module over the pro-operad $\mathbb{I}_{\mathcal{C}}^{\bullet}$ consists of maps

 $A(k) \rightarrow \operatorname{colim}_{L} \operatorname{Map}(\mathbb{I}^{L}_{\mathcal{C}}(n_{1}) \wedge \ldots \wedge \mathbb{I}^{L}_{\mathcal{C}}(n_{k}), A(n))^{\Sigma_{n_{1}} \times \cdots \times \Sigma_{n_{k}}}.$

For $F : C \to Sp$, the right \mathbb{I}_C -module structure on $\partial_* F$ can be refined to a right \mathbb{I}_C^{\bullet} -module structure.

Theorem (C.)

Let ${\mathcal C}$ be a pointed compactly-generated ∞ -category. Then there is an equivalence of ∞ -categories

 $\partial_* : (n$ -excisive functors $\mathcal{C} \to Sp) \xrightarrow{\sim} (n$ -truncated right $\mathbb{I}^{\bullet}_{\mathcal{C}}$ -modules).